
Data Mining Report: Assessing and implementing
clustering and classification techniques

Freddy Marten
School of Computing and Communications, Lancaster University

SCC403: Data Mining

Abstract—This report first concerns Climate Data from Basel,
Switzerland in the Summer and Winter seasons between 2010
and 2019. We also look at a video stream of a police car
chasing a motorbike. We pre-process both datasets to ready them
for data mining. I will cluster the climate data, discerning the
typical days of weather which form Basel’s climate. By clustering
with k-means, DBSCAN and OPTICS I show a broad and then
more detailed picture. We then train a few classifiers capable
of discerning the car from the motorbike. After tuning hyper-
parameters we assess the performance of both our clustering and
classification results.

I. INTRODUCTION

A. Pre-processing Techniques Considered

1) Extreme/Missing Observations: We will search for such
observations using histograms and summary statistics. Any
outliers are treated based on the context of the data.

2) Feature Selection: Before using any formal techniques I
considered which variables are reasonable to remove from both
the data sets. With both data sets I selected pertinent columns
to simplify the problem with minimal loss of information. For
the Climate Data, I used the variance threshold technique from
the sci-kit learn package on the remaining features to reduce
redundancy even further [8], and avoid an imbalanced data
set. With the Data Stream I will split some rows, to ensure
our data set is more balanced when training classifiers.

3) Feature Scaling: For many subsequent methods it might
be important to use min-max scaling and z-score standard-
isation so that they function effectively. This is especially
important to the climate data since our variables are on vastly
different scales.

4) Principal Component Analysis: Principal Component
Analysis (PCA) is a dimensionality reduction technique which
uses linear algebra to create new descriptive variables (princi-
pal components) which are linear combinations of the features.
Crucially we can visualise our high dimensional data set using
PCA with a measurable amount of variance explained with just
2 principal components.

B. Clustering Techniques Considered

Clustering algorithms come in a few different broad forms. I
chose to consider clustering methods with significantly differ-
ences to increase the chance of identifying the most prominent
clusters in the data. I rejected Hierarchical methods outright
due to their sensitivity to noise and outliers [6]. Furthermore,
given our variables of all numeric rather than categorical, it can

be hard to follow the tree downward intuitively. For larger data
sets, hierarchical algorithms suffer with high computational
complexity, O(n2) as a minimum. For comparison, k-means,
which also has the benefit of being straightforward to interpret
has O(n) computational complexity. We split this section
into the three methods/orderings; K-means, DBSCAN and
OPTICS.

1) K-means: K-means is essentially an optimization prob-
lem with the goal of minimizing the sum of squared errors
within a pre-determined number of groups, k [3]. The al-
gorithm provides no guarantee of a global optimum and is
susceptible to reaching local optima, especially with certain
data structures [3]. Despite this, k-means’ straightforward
interpretability is useful as a foundation to understand other
methods from. Furthermore, given the complexity of climate
data in general, and the fact that only the summer and winter
seasons are included in our climate data, I expect the transition
between the summer and winter seasons to be quite abrupt.
This was the main reason why I have not considered an
algorithm like fuzzy k-means - I would have employed this if
the spring and autumn seasons were included.

2) DBSCAN: DBSCAN [5] was proposed as a relatively
easy to use clustering algorithm that worked efficiently on
large spatial databases to identify clusters of a wide range of
forms. [2] claims DBSCAN’s strength is in identifying clusters
whilst not being too sensitive to noise. Furthermore, in the
paper introducing a generalised DBSCAN, [18] highlights that
it succeeds in being easy to use, with a single hyperparameter,
Eps > 0 which sets minimum number of points surrounding
a point for it to not be considered as noise. This fits our
Basel climate data, we have more than two dimensions and
a large number of data points. Weather is obviously not
completely independent of the day previous. Despite this,
classifying some days as noise may help us identify the strange
attractors in our chaotic weather data [9]. However, [2] adds
that DBSCAN struggles to identify multiple clusters if they
are on different clustering scales. There has been evidence,
[17], that DBSCAN can perform worse than K-means when
performed on Weather Data. Though, [17], only used rainfall
data and only from areas that can receive huge quantities of
rainfall around the equator whereas our data is from much
further north in Basel. Regardless, using OPTICS [1] with
DBSCAN could improve performance above that of k-means.

3) OPTICS: Optics [1], is an extension of the DBSCAN
algorithm which is motivated by the problem of clustering a



dataset with clusters of data points at different scales. So it is
not a clustering algorithm itself. For instance, in many cases if
we look at an arbitrary 2-dimensional scatter plot of all of the
data we may only identify two large clusters. Then zooming
in to these clusters we might notice a few different clusters
within these. Zooming in again on one of these clusters we
might notice another set of clusters. OPTICS aims to order
the dataset in a particular way such that information regarding
each of these zooms or clustering levels as [1] calls them, is
contained. Given the complex relationships that the features
have with one another in our climate data, it seems possible
we will have nested clusters within our different clustering
levels. Accordingly, I try to provide a broader picture with
k-means alongside a more complex multi-level picture with
DBSCAN and OPTICS.

C. Classification Techniques Considered

When performing a classification task we first want to check
whether our data is linearly separable or if a more complex
non-linear classification technique might necessary. When
considering the scatter plot of the full data stream, 14, we
see that the our stream is linearly separable though with a few
data points close to the line separating the Car and Motorbike
frames. Using a simple linear support vector machine to create
a significant margin between the two datasets therefore seemed
appropriate.

1) Support Vector Classifier: Our support vector classifier
[4] is aimed at creating an optimal hyperplane and corre-
sponding margin. Note that the hyperplane of 2-dimensional
space is simply a straight line. [15] defines a hyperplane in
N -dimensional space, with w ∈ RN and b ∈ R, is defined (1).
With the canonical margins we simply translate the hyperplane
by 1 unit in either direction giving (2).

w · x+ b = 0 (1)
w · x+ b = ±1 (2)

2) Random Forest: I chose a random forest because I
thought it paired better with our SVM than other linear
classifiers. I strongly considered using a real time classifier
since I felt this would have more practical applications but
had trouble implementing such techniques. A random forest
has the advantage of being easy to interpret but also robust.
From their discovery, [12], they have been shown to be
susceptible to overfitting. However in our case I feel the linear
separable nature of the data 14, allows us to get highly accurate
classifiers that might be appropriate for future videos of car
chases or simply identifying vehicles in traffic.

3) Performance Measures: In this report the performance
measures: Accuracy, F1 Score, Recall and Precision will all

be used for Classification. We have, from [16]:

Accuracy =
TP + TN

TP + TN + FP + FN
(3)

Recall =
TP

TP + FN
(4)

Precision =
TP

TP + FP
(5)

F1 =
2

Recall−1 + Precision−1 (6)

Using this combination rather than Accuracy alone, gives
us a more detailed picture of where classifiers might be
under-performing. For instance with our label set - Car and
Motorbike we might be able to see which vehicle is being
classified more accurately in a more detailed way. Our F1

Score is the harmonic mean of Recall and Precision, giving
us a useful measure of both Recall and Precision combined.

II. PRE-PROCESSING

A. Climate Basel Data

Our climate data initially had 18 features with 1763 rows.
It is very difficult to visualise data of this many dimensions
clearly. Therefore we will have to use dimensionality reduction
at some stage or stages in order to get to a point where we
can visualise our clustering.

1) Extreme/Missing Observations: When we consider out-
liers in our climate data [8] highlights that we should not only
consider the outliers of the single variable, but the relationships
between the features in a multi-dimensional setting. This is a
much more difficult thing to do especially in our case of the
Basel Climate Data where it makes sense for a variable like
snowfall to spike at low temperatures. Extreme weather exists
and whilst it may make our data more difficult to cluster by
including such outliers, the results we produce by excluding
such observations might not hold as much weight. As [8]
notes, though a row may be extreme it still could belong to the
overarching distribution of the data. Searching and reporting
and data that is not just extreme but seems like a mistake or
corrupted [8] is important though data entry errors are unlikely
given the data is gathered automatically, [14].

2) Feature Selection: Before performing any pre-
processing I selected the features most pertinent to describing
the environment. So I first removed all the minimum or
maximum versions of the features, only keeping the means. I
also removed wind gust as it showed very strong correlation
with wind speed of 0.93. Following this we were left with 7,
where we have quite low correlation across all the features.
Note that mean humidity and temperature do have some
significant correlation, -0.55, which is to be expected given
these are related variables.

3) Feature Scaling: For both our clustering methods we
standardise and normalise our data. We do this for multiple
reasons. For one, our data is measured on different scales; pas-
cals, millimetres, kilometers per hour ect., but our techniques
do not account for this. Since we are utilising distance mea-
sures it is important the distance results we have are not simply



stemming from the different of our features. Mathematically,
min-max feature scaling (or normalisation) is performed by
dividing the variables by the minimum and maximum value
from each feature. So for a column x, transformed value, x′

and the value at the ith row, xi, we would have [11]:

x′
i =

xi −min{x}
max{x} −min{x}

(7)

This ensures all our data fits within a set over the interval
[0, 1]. Performing z-score standardisation [11] does not give
our data a Normal(0, 1) distribution as another name for
the scaling technique, Normalisation might indicate. Z-score
standardisation simply ensures we have a transformed mean,
µ′ = 0 and transformed standard deviation, σ′ = 1.

x′
i =

xi − µ

σ
(8)

4) Dimensionality Reduction: Before clustering our Cli-
mate Dataset, I used PCA to make our five dimensional
dataset more interpretable in less dimensions. Visualisation is
an essential aspect of clustering and we cannot do this if our
dataset has too many dimensions. Though our 1st and 2nd
Principal Components are less easy to understand than say,
temperature and rainfall, they are still a linear combination
of these features. Our 1st Principal Component accounts for
a large proportion of the variance within our data at over
42.6% as seen in 1. Adding the 2nd component we have over
65% of variance explained. So the 2d projections of principal
components we display later when clustering describe 65% of
the variance of the data.

1 2 3 4 5
Principal Component

0

5

10

15

20

25

30

35

40

Va
ria

nc
e 

Ex
pl

ai
ne

d 
(%

)

42.66%

23.54%

16.17%

10.04%
7.60%

Fig. 1. Variance Explained by Principal Components

B. Car chase data stream

First I combined the WLA and label csv files by column.
Then I looked for outliers across this full, combined dataset.

1) Extreme/Missing Observations: To detect any outliers I
used a box-plot of the data shown in figure 13. Note that
we account for relationships [8] between our fundamental
features - Length and Width by using area in figure 13. I
also considered these same factors with the car chase data
stream, though here it is much easier to identify outliers given
the smaller size of the dataset and since we have the mp4
file aswell I cross-referenced by eye and saw no signs of
corruption or outliers.

2) Feature Selection: From here, I removed the first 17
rows of the dataset before the police car is visible. I split the
dataset into train and test datasets, with 80% in the training
dataset and 20% into the test dataset. The first 17 rows were
then added to the test set so now we are not overly training
our models on the motorbike object but can test models on
additional data.

3) Feature Scaling: I used the min-max scaler (see 7) to
scale both values down. This was the extent of feature scaling
- I felt we should take advantage of the middle ground we
have here between interpretability of our features and results.

III. CLUSTERING

A crucial consideration when using clustering algorithms is
the specification of the number of clusters by the user [6].
Often we use some distance measure to determine closeness
of data points. Euclidean distance is a standard approach, and
the one I have used in K-means, DBSCAN and OPTICs clus-
tering. For n-dimensional vectors a and b Eucliden distance
is defined:

de(a, b) =
√
(a1 − b1)2 + · · ·+ (an − bn)2 (9)

A. k-means

1) Hyper-parameter Tuning: In this report k-means uses
Scikit-learn’s greedy k-means++ algorithm to choose our
centers. Therefore, whilst k-means has a computational com-
plexity of O(n) [6], when using greedy k-means++ we have
an approximate complexity of O(ℓ3 log3 k)[10], for candidate
samples, ℓ. So the only hyper-parameter we need to be careful
tuning is the number of clusters, k. When choosing the optimal
number of clusters I both considered the appearance of the
scatter plots 9, 2 and 10. Elbow plots of the data using both the
inertia and distortion and Silhouette Scores were also useful.
Of note in figure 9 is that the data is more sparse in the
area around the division line. This indicates that there weaker
clustering in this area which is desirable. Compared to figure 2,
which does have the key areas of density in separate clustered
but the separation between the dark blue and yellow clusters
is less pronounced. For inertia and distortion of point p, pinert
and pdistort respectively we have (10)

pinert =

(
n∑

k=2

de(p, pcentroid)

)2

(10)

pdistort =
pinert

n
(11)



Where n is the largest number of clusters we consider - in
this case 7. So in figure 8, we are simply averaging out these
two measures across all data points for different values of k.

Note that Distortion penalises greater k values more than
Inertia due to the 1/n penalty coefficient. Increasing the value
of k always decreases our average distances because we are
adding new cluster points. Therefore we want to find a k which
causes the remainder of the graph to be linear and approaching.
For both Inertia and Distortion it appears our elbow point is
either at 3 or 4 clusters. We consider both and try to distinguish
our optimal value of k using 2-d projections of our clustering.

2) Results: In k = 3 2 our clusters look much more
convincing than with k = 4 in 10. In particular our cluster
on the left is quite clearly divided from the others. There is
some uncertainty in the divide between our yellow and dark
blue clusters on the far right of the plot. Our silhouette scores
were very similar for both k = 3 and k = 4, shown in table
III.

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
Principal Component 1

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Pr
in

cip
al

 C
om

po
ne

nt
 2

Centres

Fig. 2. 2-d projection of k-means with k = 3 using 1st & 2nd Principal
components

B. DBSCAN

1) Hyper-parameter Tuning: We first check how DBSCAN
performs prior to using OPTICs. DBSCAN is very dependent
on our value of Eps, which is the parameter the algorithm
is really only dependent on [5]. I used some rules of thumb
for tuning the parameters outlined in [18] such as using k =
2d+1 for our d-dimensional dataset. So since our dataset has
5-dimensions we used k = 11 initially. Performing k-nearest-
neighbours [7], on this data and sorting by ascending distance
we produced an elbow like plot 11,[5]. We use this to choose
our Eps value at the part of the elbow plot with the most
curvature, approximately marked by the dashed grey line in
11 at Eps = 0.25.

2) Results: The first thing we notice is quite how many
data points have been classified as noise. This leaves us with
a clear clusters labelled 0 and 1 on the left and bottom right
respectively. There is some overlap between the remaining

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
Principal Component 1

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Pr
in

cip
al

 C
om

po
ne

nt
 2

DBSCAN Plot, eps = 0.25
Noise
0
1
2
3
4

Fig. 3. DBSCAN

clusters in the top right of the plot. Note that whilst some
noise is also overlapping in this area this is because our plot is
a 2-dimensional projection of the PCA transformed data and
therefore the other components for these points mean their
euclidean distance is further from the clusters.

C. DBSCAN with OPTICS

1) Hyper-parameter Tuning: OPTICs is founded with al-
lowing us to have a logical way of choosing our hyper-
parameters with our reachability plot, 4. This is similar to
11 but now using OPTICS to order our data rather than
doing some pre-processing using K-NN. Our reachability
plot has multiple valleys with the bottoms of these valleys
corresponding to the centers of our clusters [1]. These clusters
are included in the noise if their valley is below Eps. There
are also some points regarded as noise regardless of our value
of Eps. With all this considered multiple different DBSCAN
plots were created using OPTICS, which we examined based
on the 2-d visualisation we get due to our PCA.

2) Results: First we consider the automatic OPTICS plot
in figure 5. Much like k-means and our optimal DBSCAN
plot, a strong cluster is identified on the left of the plot. In
figure 5 this stretches to cover much of the left half. We see
little noise in this region with most the noise in the middle
right of the plot. There was another string cluster labelled 1
on the bottom right of the plot which was similarly identified
in figure 3. The key difference between figures 5 and 3 is the
much larger region of noise in figure 3. Our silhouette scores
did not exceed k-means with the closest to one being 0.3 for
0.45 - this plot is shown in figure 12.

We also consider how DBSCAN changes at different epsilon
cuts when using OPTICS ordering.

IV. CLASSIFICATION

A. Support Vector Machine

Given the linear separability of our data as discovered in
our pre-processing it comes as no surprise that our support



0 250 500 750 1000 1250 1500 1750
Index

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Re

ac
ha

bi
lit

y 
(e

ps
 d

ist
an

ce
)

Reachability Plot

Noise
0
1
2
3

Fig. 4. Reachability Plot

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
Principal Component 1

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Pr
in

cip
al

 C
om

po
ne

nt
 2

Optics Plot
Noise
0
1
2
3

Fig. 5. Automatic OPTICS Clustering

vector machine achieves a good classification of the data.

1) Hyper-parameter Tuning: Our Support Vector Classifier
did not require much parameter tuning - our F1 Scores were 1
for all values of cost parameter c ∈ [0, 50]. By 6 notice that we
could quickly check if all of our performance measures equal
1 by checking only F1 Scores. Only when we have measures
not equal to 1 do we have to consider the more detailed view
provided by the four metrics together. I chose 10 since I felt
the margin in figure 6 separated the data in a neat and logical
way. SVM required minimal tuning to classify our data in an
accurate way.

2) Results: Since we only have two dimensions we produce
a similar scatter-plot to 14 but now with our margin and
decision boundaries. This took quite a lot of manipulation.
The form our hyperplane, 1, is not initially very useful. We

Measure SVM Score

Accuracy 1.000
F1 Score 1.000
Recall 1.000
Precision 1.000

TABLE I
SVM PERFORMANCE FOR ALL COST PARAMETERS BETWEEN 1 AND 50

manipulate this into a more useful form now.

w · x+ b = 0 (12)[
w1 w2

] [x1

x2

]
+ b = 0 (13)

w1x1 + w2x2 + b = 0 (14)

x2 = −w1

w2
x1 −

b

w2
(15)

Now from this straightforward manipulation we have an equa-
tion in a familiar linear form. Scikit learn will calculate w1, w2

and b so we can now form program our separating hyperplane.
The only thing left is to calculate the distance of the margin
is from the hyperplane

0.0 0.2 0.4 0.6 0.8 1.0
Length

0.0

0.2

0.4

0.6

0.8

1.0

W
id

th

Vehicle
Car
Motorbike

Fig. 6. Support Vector Machine margin marked in green, and separating
hyperplane in blue

B. Random Forest

I initially fit a random forest with 5 estimators finding one
false positive and one false negative. This is already quite a
strong fit as shown in table II.

1) Hyper-parameter Tuning: Given the presence of Type
I and Type II errors, I used cross-validation of the random
search to adjust our parameters. I used 10-fold Randomized
Cross-Validation to test tune the hyper-parameters. Note that
this is quite a time-intensive process [13] even for our training
data with only 136 rows it took 8.105 seconds to perform
this. Therefore, another technique might be necessary if using
a larger data stream sample due to long processing times.



Following this cross-validation we did have improved results
II. It appears, [12]’s findings have been found again that
random forests have a tendancy to ovefit.

Measure Untuned Tuned

Accuracy 0.981 0.942
F1 Score 0.977 0.933
Recall 1.000 1.000
Precision 0.955 0.875

TABLE II
RANDOM FOREST PERFORMANCE BEFORE AND AFTER TUNING

HYPER-PARAMETERS

2) Results: Our hyper-parameter tuning decreased our
scores slightly. It appears our model has overfitted to cars
in this case with three motorbikes misclassified as cars.
Accordingly Recall remains at 100% since in our dataset no
cars have been misclassified (these are the positive results in
our case.

V. CONCLUSION

With Basel Climate data, we have considered the clustering
approaches, k-means, DBSCAN, and OPTICs and for DB-
SCAN and OPTICS with a range of different Eps parameters
giving vastly different results. For a broad understanding of
this data set, I would recommend k-means with 3 clusters-
this had the lowest silhouette score and a visually appealing
2-d visualization. If a more detailed look at less noisy results
is desired, the automatic OPTICS clustering is powerful -
highlighting the major points of k-means but with some
additional complexity. For the data stream, a linear support
vector machine classifier is definitely advised based on my
findings. A random forest is quite accurate, but seems less
suited to this dataset. Results and implementation were easier
and better with our svc.

REFERENCES

[1] Mihael Ankerst et al. “OPTICS”. eng. In: SIGMOD
record 28.2 (1999), pp. 49–60. ISSN: 0163-5808.

[2] Panthadeep Bhattacharjee and Pinaki Mitra. “A survey
of density based clustering algorithms”. In: Frontiers of
Computer Science 15 (2021), pp. 1–27.

[3] Yizong Cheng. “Mean shift, mode seeking, and clus-
tering”. In: IEEE transactions on pattern analysis and
machine intelligence 17.8 (1995), pp. 790–799.

[4] Corinna Cortes and Vladimir Vapnik. “Support-vector
networks”. eng. In: Machine learning 20.3 (1995),
pp. 273–297. ISSN: 0885-6125.

[5] Martin Ester et al. “A density-based algorithm for dis-
covering clusters in large spatial databases with noise”.
In: kdd. Vol. 96. 34. 1996, pp. 226–231.

[6] Absalom E. Ezugwu et al. “A comprehensive survey of
clustering algorithms: State-of-the-art machine learning
applications, taxonomy, challenges, and future research
prospects”. In: Engineering Applications of Artificial
Intelligence 110 (2022). Cited by: 158. DOI: 10.1016/j.
engappai.2022.104743.

[7] Evelyn Fix and Joseph Lawson Hodges. “Discrimi-
natory analysis: Nonparametric discrimination: Small
sample performance”. In: (1952).

[8] Karina Gibert, Miquel Sànchez-Marrè, and Joaquı́n
Izquierdo. “A survey on pre-processing techniques: Rel-
evant issues in the context of environmental data min-
ing”. eng. In: Ai communications 29.6 (2016), pp. 627–
663. ISSN: 0921-7126.

[9] James Gleick. Chaos making a new science. eng. New
York, N.Y.: Open Road Integrated Media, 2011. ISBN:
9781453210475.

[10] Christoph Grunau et al. A Nearly Tight Analysis
of Greedy k-means++. 2022. arXiv: 2207 . 07949
[cs.DS].

[11] Jiawei Han, Micheline Kamber, and Jian Pei. “3 - Data
Preprocessing”. In: Data Mining (Third Edition). Ed. by
Jiawei Han, Micheline Kamber, and Jian Pei. Third
Edition. The Morgan Kaufmann Series in Data Man-
agement Systems. Boston: Morgan Kaufmann, 2012,
pp. 83–124. ISBN: 978-0-12-381479-1. DOI: https://doi.
org/10.1016/B978-0-12-381479-1.00003-4.

[12] Tin Kam Ho. “Random decision forests”. In: Proceed-
ings of 3rd international conference on document anal-
ysis and recognition. Vol. 1. IEEE. 1995, pp. 278–282.

[13] Sergey Kucheryavskiy et al. “Procrustes Cross-
ValidationA Bridge between Cross-Validation and Inde-
pendent Validation Sets”. eng. In: Analytical chemistry
(Washington) 92.17 (2020), pp. 11842–11850. ISSN:
0003-2700.

[14] Michaelaschloegl. Weather archive Basel. Dec. 2023.
URL: https : / / www . meteoblue . com / en / weather /
historyclimate / weatherarchive / basel switzerland
2661604.

[15] Mehryar Mohri. Foundations of machine learning. eng.
Second edition. Adaptive computation and machine
learning. Cambridge, Massachusetts: The MIT Press,
2018. ISBN: 9780262039406.

[16] David L Olson and Dursun Delen. Advanced data
mining techniques. Springer Science & Business Media,
2008, p. 138.

[17] G C Pamuji and H Rongtao. “A Comparison study
of DBScan and K-Means Clustering in Jakarta rain-
fall based on the Tropical Rainfall Measuring Mis-
sion (TRMM) 1998-2007”. In: IOP Conference Series:
Materials Science and Engineering 879.1 (July 2020),
p. 012057. DOI: 10.1088/1757- 899X/879/1/012057.
URL: https: / /dx.doi .org/10.1088/1757- 899X/879/1/
012057.

[18] Jörg Sander et al. “Density-based clustering in spatial
databases: The algorithm GDBSCAN and its applica-
tions”. eng. In: Data mining and knowledge discovery
2.2 (1998), pp. 169–194. ISSN: 1384-5810.

ACKNOWLEDGEMENTS

The following were all very useful.
• SCC403 labs and lectures

https://doi.org/10.1016/j.engappai.2022.104743
https://doi.org/10.1016/j.engappai.2022.104743
https://arxiv.org/abs/2207.07949
https://arxiv.org/abs/2207.07949
https://doi.org/https://doi.org/10.1016/B978-0-12-381479-1.00003-4
https://doi.org/https://doi.org/10.1016/B978-0-12-381479-1.00003-4
https://www.meteoblue.com/en/weather/historyclimate/weatherarchive/basel_switzerland_2661604
https://www.meteoblue.com/en/weather/historyclimate/weatherarchive/basel_switzerland_2661604
https://www.meteoblue.com/en/weather/historyclimate/weatherarchive/basel_switzerland_2661604
https://doi.org/10.1088/1757-899X/879/1/012057
https://dx.doi.org/10.1088/1757-899X/879/1/012057
https://dx.doi.org/10.1088/1757-899X/879/1/012057


• Base Python (version 3.11) was used, documentation
https://docs.python.org/3.11/library/index.html

• Sci-kit learn documentation https://scikit-learn.org/stable/
user guide.html

• Pandas, https://pandas.pydata.org/docs/user guide/index.
html#user-guide

• https://www.geeksforgeeks.org/pandas-tutorial/?ref=shm
• Seaborn, https://seaborn.pydata.org/tutorial.html
• Numpy, https://numpy.org/doc/1.26/user/index.html#user
• Matplotlib https://matplotlib.org/stable/users/index.html

was extremely useful
• Variance thresholds Towards Data Science Various for

feature selection
• For optics, https://www.geeksforgeeks.org/

ml-optics-clustering-implementing-using-sklearn/
• For svm, How to plot a decision boundary with margins

in 2d space
• Determining Epsilon and MinPts parameters of

DBSCAN clustering https://sefidian.com/2022/12/18/
how-to-determine-epsilon-and-minpts-parameters-of-dbscan-clustering/

• Scipy, https://docs.scipy.org/doc//scipy/tutorial/index.
html#user-guide

• For accuracy measures https://proclusacademy.
com/blog/practical/precision-recall-f1-score-sklearn/
whenasessingaccuracy

• 17 clustering algorithms used in data science when ini-
tially choosing my clustering algorithms.

• For developing my understanding of PCA Making sense
of PCA

APPENDIX

Fig. 7. Correlation Matrix

1 2 3 4 5 6 7
Number of clusters, k

0

250

500

750

1000

1250

1500

1750

Va
lu

e

Inertia
Distortion

Fig. 8. Elbow Plot

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
Principal Component 1

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Pr
in

cip
al

 C
om

po
ne

nt
 2

Centres

Fig. 9. 2-d projection of k-means with k = 2 using 1st & 2nd Principal
components

k Silhouette Score

4 0.362
3 0.362
2 0.347
6 0.320

TABLE III
SILHOUTTE SCORES FOR K-MEANS IN DESCENDING ORDER

https://docs.python.org/3.11/library/index.html
https://scikit-learn.org/stable/user_guide.html
https://scikit-learn.org/stable/user_guide.html
https://pandas.pydata.org/docs/user_guide/index.html#user-guide
https://pandas.pydata.org/docs/user_guide/index.html#user-guide
https://www.geeksforgeeks.org/pandas-tutorial/?ref=shm
https://seaborn.pydata.org/tutorial.html
https://numpy.org/doc/1.26/user/index.html#user
https://matplotlib.org/stable/users/index.html
https://towardsdatascience.com/exploring-the-various-ways-to-evaluate-features-for-feature-selection-1142f7788aeb
https://towardsdatascience.com/exploring-the-various-ways-to-evaluate-features-for-feature-selection-1142f7788aeb
https://www.geeksforgeeks.org/ml-optics-clustering-implementing-using-sklearn/
https://www.geeksforgeeks.org/ml-optics-clustering-implementing-using-sklearn/
https://medium.com/geekculture/svm-classification-with-sklearn-svm-svc-how-to-plot-a-decision-boundary-with-margins-in-2d-space-7232cb3962c0
https://medium.com/geekculture/svm-classification-with-sklearn-svm-svc-how-to-plot-a-decision-boundary-with-margins-in-2d-space-7232cb3962c0
https://sefidian.com/2022/12/18/how-to-determine-epsilon-and-minpts-parameters-of-dbscan-clustering/
https://sefidian.com/2022/12/18/how-to-determine-epsilon-and-minpts-parameters-of-dbscan-clustering/
https://docs.scipy.org/doc//scipy/tutorial/index.html#user-guide
https://docs.scipy.org/doc//scipy/tutorial/index.html#user-guide
https://proclusacademy.com/blog/practical/precision-recall-f1-score-sklearn/ when asessing accuracy
https://proclusacademy.com/blog/practical/precision-recall-f1-score-sklearn/ when asessing accuracy
https://proclusacademy.com/blog/practical/precision-recall-f1-score-sklearn/ when asessing accuracy
https://towardsdatascience.com/17-clustering-algorithms-used-in-data-science-mining-49dbfa5bf69a#7e1d
https://stats.stackexchange.com/questions/2691/making-sense-of-principal-component-analysis-eigenvectors-eigenvalues/140579#140579
https://stats.stackexchange.com/questions/2691/making-sense-of-principal-component-analysis-eigenvectors-eigenvalues/140579#140579


1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
Principal Component 1

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Pr
in

cip
al

 C
om

po
ne

nt
 2

Centres

Fig. 10. 2-d projection of k-means with k = 4 using 1st & 2nd Principal
components

0 250 500 750 1000 1250 1500 1750
Index

0.0

0.1

0.2

0.3

0.4

0.5

Ep
s

Fig. 11. Elbow Plot for DBSCAN using K-Nearest-Neighbour ordering.
Approximate threshold point marked in grey.

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
Principal Component 1

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Pr
in

cip
al

 C
om

po
ne

nt
 2

Eps = 0.45
Noise
0
1

Fig. 12. DBSCAN Epsilon cutoff at Eps=0.45 OPTICS Clustering

Car Motorbike
Vehicle

0

1000

2000

3000

4000

Ar
ea

Fig. 13. Box Plot of Full Data Stream Dataset (incl. first 16 rows)

0.0 0.2 0.4 0.6 0.8 1.0
Length

0.0

0.2

0.4

0.6

0.8

1.0

W
id

th

Vehicle
Car
Motorbike

Fig. 14. Scatter Plot of Full Data Stream Dataset (incl. first 16 rows)


	Introduction
	Pre-processing Techniques Considered
	Extreme/Missing Observations
	Feature Selection
	Feature Scaling
	Principal Component Analysis

	Clustering Techniques Considered
	K-means
	DBSCAN
	OPTICS

	Classification Techniques Considered
	Support Vector Classifier
	Random Forest
	Performance Measures


	Pre-processing
	Climate Basel Data
	Extreme/Missing Observations
	Feature Selection
	Feature Scaling
	Dimensionality Reduction

	Car chase data stream
	Extreme/Missing Observations
	Feature Selection
	Feature Scaling


	Clustering
	k-means
	Hyper-parameter Tuning
	Results

	DBSCAN
	Hyper-parameter Tuning
	Results

	DBSCAN with OPTICS
	Hyper-parameter Tuning
	Results


	Classification
	Support Vector Machine
	Hyper-parameter Tuning
	Results

	Random Forest
	Hyper-parameter Tuning
	Results


	Conclusion

